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Abstract

Multi-objective optimization was used to calibrate a regional surface water-groundwater
model of the Yaqui Valley, a 6800 km2 irrigated agricultural region located along the Sea
of Cortez in Sonora, Mexico. The main advantage of the method is that it accounts for
both parameter and model structural uncertainty. In this case, results show that the5

effect of including the process of bare soil evaporation is significantly greater than the
effects of parameter uncertainty. Furthermore, by treating the different objectives in-
dependently, a better identification of the model parameters is achieved compared to
a single-objective approach, since the various objectives are sensitive to different pa-
rameters. The simulated water balance shows that 15–20% of the water that enters10

the irrigation canals is lost by seepage to groundwater. The main discharge mecha-
nisms in the Valley are crop evapotranspiration (53%), non-agricultural evapotranspi-
ration and bare soil evaporation (19%), surface drainage to the Sea of Cortez (15%),
and groundwater pumping (9%). In comparison, groundwater discharge to the estuary
was relatively insignificant (less than 1%). The model was further refined by identifying15

zonal Kv and Kh values based on a spatial analysis of the model residuals. This is the
first comprehensive flow model of this important surface water-aquifer system, and it
will be used in future work to identify optimal groundwater management strategies.

1. Introduction

Calibration of hydrologic models consists of an iterative process during which the model20

parameters are adjusted such that the model better mimics the observed dynamics of
the system under consideration. Due to the time-consuming nature of this process,
automated calibration methods have been developed for finding optimal parameter val-
ues that best fit the data. The match between simulated and observed variables is
usually quantified by a single objective function, such as the root mean square error25

(RMSE). The calibration is then cast as an optimization problem in which parameter

2062

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/2061/hessd-2-2061_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/2061/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 2061–2109, 2005

Multi-objective
calibration of a

surface
water-groundwater

model

G. Schoups et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

values are sought that minimize the objective function. These optimization algorithms
typically perform a local search of the parameter space, starting from an initial estimate
and leading to a local optimum (e.g. Poeter and Hill, 1998; Doherty, 2000). In addition,
global algorithms have been developed that search the entire parameter space and
hence result in globally optimal parameter values (e.g. Duan et al., 1992; Vrugt et al.,5

2003a).
In many applications it is desirable that the model reproduces different types of ob-

servations (e.g. water levels and drainage rates). In that situation, calibration of the
model to one data type does not guarantee successful simulation of the other data
types. Calibration to multiple targets is typically done by assigning weights to the dif-10

ferent types of data and combining them into a single objective function for parameter
optimization (Hill, 1998). However, the subjective prior selection of weights typically
affects the calibrated parameter values. In that case, the single-objective calibration
can be repeated using different values for the weights in each optimization run (Mad-
sen, 2003), although this approach is computationally very intensive. Alternatively,15

a full multi-objective optimization is conducted that identifies the entire optimal set of
non-dominated or Pareto solutions within a single optimization run (Gupta et al., 2003).
These Pareto solutions explicitly represent trade-offs between the various objectives.
The advantage is that no prior weights need to be assigned to the different objec-
tives, since they are treated independently (Schoups et al., 2005). In addition, the20

multi-objective approach includes more information about the hydrologic system in the
parameter identification process, thereby potentially leading to better estimates of the
parameters (Boyle et al., 2000). On the other hand, significant trade-offs in fitting two
or more objectives may indicate an error in the model structure (Refsgaard and Hen-
riksen, 2004), for example a relevant physical process may not be accounted for or it25

may be wrongly parameterized.
This paper discusses the application of a multi-objective global optimization ap-

proach to the calibration of a regional surface water-groundwater flow model. The study
area is the 6800 km2 Yaqui Valley in the state of Sonora, one of the most important agri-
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cultural regions in Mexico. Irrigated agriculture in the Yaqui Valley has since 1942 relied
on the supply of water from surface reservoirs. A recent prolonged eight year drought
(1996–2004) however has drawn down these reservoir levels below sustainable levels,
resulting in severe cuts in water supply and widespread fallowing (Addams, 2004). For
the first time in 40 years, due to the effects of the drought on reservoir depletion, wheat5

was not grown in Yaqui Valley, which is the center for the “Green Revolution” for wheat
in Mexico. Due to uncertainties in the future supply of surface water for irrigation, farm-
ers in the Yaqui Valley will depend more and more on groundwater as an additional or
even primary source of irrigation water.

The integrated surface water-groundwater model presented here revises the original10

model of Addams (2004) and serves as a first step to developing a comprehensive
water management plan for the region. Unlike previous hydrogeologic research in the
Yaqui Valley (Diaz, 1995; Islas, 1998; Steinich and Chavarria, 2000), the flow model
presented here incorporates all known spatially distributed stresses on the system,
including pumping, drainage, irrigation canal seepage, and field irrigation losses (Ad-15

dams, 2004). Using hydraulic heads, canal seepage rates, and drainage volumes,
a multi-objective calibration problem is formulated and solved using the recently de-
veloped Multi-Objective Shuffled Complex Evolution Metropolis (MOSCEM-UA) global
optimization algorithm of Vrugt et al. (2003b).

The paper is organized as follows. First, the study area, hydrology, and hydrogeology20

of the Yaqui Valley are briefly described. The conceptual model for groundwater flow is
introduced, and the methods used for its initial parameterization are discussed. This is
followed by an introduction to the calibration algorithm and the available measurements
used to calibrate the model. Next, the results of applying the multi-objective optimiza-
tion algorithm are discussed in detail, highlighting the advantages of this approach25

compared to more traditional methods and summarizing insights into the regional flow
system of the Yaqui Valley.
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2. Methods

2.1. Study area: water resources and hydrogeology

Figure 1 shows the location of the Yaqui Valley, which lies between the coastal plain
of the Sea of Cortez to the southwest and the Sierra Madre Mountains to the north-
east. The climate is semi-arid with an average annual precipitation of ∼300 mm, most5

of it falling in the summer from June to September. Annual potential evapotranspiration
averages 2000 mm. Most of the farmland in the Valley is part of the Yaqui Irrigation
District (Fig. 1). The dominant crop is winter wheat, which is grown from November to
April, and is irrigated using a combination of surface water and groundwater. The sur-
face water system consists of three reservoirs in series on the Yaqui River, the largest10

and furthest downstream being the Oviachic reservoir (Fig. 1). Surface water releases
from Oviachic reservoir are conveyed to the Yaqui Irrigation District by means of open
unlined canals. Along the way, water is diverted by the various agricultural water man-
agement units, known as modules, that make up the Irrigation District. Water is further
distributed to individual fields within each module by means of a network of secondary15

irrigation canals. Almost 600 wells have also been installed (Fig. 1) to provide addi-
tional water for crop production, although these are never all active in the same year.
Some of the wells are privately operated whereas others are managed by the District.
Throughout the Irrigation District, a drainage network (Fig. 4) has been installed to
drain surplus irrigation water from fields out to the Sea of Cortez. These drains are20

primarily open drainage ditches, with a small percentage of subsurface drainage pipes,
at a depth of 1 to 2 m below the land surface. Most of the soils in the valley are clayey
vertisols with organic matter contents less than 1% (Lobell et al., 2002).

The Yaqui Valley coastal aquifer system is primarily composed of alluvial fill con-
sisting of Quaternary deposits that include consolidated and unconsolidated gravels,25

sands, clays, and evaporate deposits (Gonzales and Marin, 2000). The groundwater
system can be conceptually divided into three layers, each of which has a particular
hydraulic function (Fig. 2). The first 10–20 m below the surface constitute the shallow
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aquifer, which receives irrigation-related recharge from canal seepage and field-level
irrigation losses. Part of the irrigation return and water from the seasonally rising local
water table is intercepted by the network of 1 to 2 m deep agricultural drains. Another
part is removed by the native vegetation around the canals (phreatophytes) or it evapo-
rates from the shallow water table. The remaining water either flows laterally toward the5

coast through the 10 to 2 m thick water table aquifer, where it discharges beneath the
estuary, or it flows downward. Vertical flow is governed by the underlying discontinuous
confining layer with a thickness ranging from 5 to 80 m. In some locations it consists
of clay and in other regions it is rich in sand and gravel, so that overall it exhibits a
high degree of variability in texture and hydraulic conductivity. Finally, the deep aquifer10

represents the zone screened by most production wells in the region. Generally, it lies
30 to 100 m below the surface, ranging in thickness from 30 to 170 m. The aquifer con-
sists of Quaternary alluvium and underlying older unconsolidated Tertiary deposits.
Depending on the magnitude of contrast in hydraulic conductivity with the overlying
confining layer, the deep aquifer behaves either as a confined, semi-confined, or un-15

confined system. Addams (2004) provides more details on how layer geometry was
determined for modeling purposes.

An estimate of the available storage in the deep aquifer under the Irrigation District
is made by summing the available storage under confined conditions (above the top
of the screened wells), assuming a specific storage of 10−4 m−1, plus the remaining20

storage under unconfined conditions, assuming a specific yield of 0.2 and counting 2/3
of the aquifer thickness. This results in a value of approximately 100 000 MCM (Million
Cubic Meters), which is about 16 times the available storage in the Yaqui reservoir
system (6000 MCM). In addition, the supply of surface water is variable and uncertain
as was evident during the recent drought. Hence, available water in the deep aquifer25

will likely play a central role in a sustainable water management plan in the Yaqui Valley.
Historically, groundwater use has been limited due to the availability of cheap surface
water and the relatively high cost of pumping.
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2.2. Hydrologic model

In this section, we discuss the concepts and methods used to simulate flow in the in-
tegrated surface water-groundwater system of the Yaqui Valley. For further details we
refer to Addams (2004). Special attention is paid to representation of the near-surface
hydrologic processes, such as recharge, evaporation, and near-surface drainage, and5

to the coupling between the surface water and groundwater systems. To reduce un-
certainty, we independently estimate as many parameters as possible (e.g. recharge),
and then find optimal values for the remaining parameters.

The groundwater component of the flow model was represented using the transient
3D groundwater flow equation,10

∂
∂x

(
Kx
∂h
∂x

)
+
∂
∂y

(
Ky
∂h
∂y

)
+
∂
∂z

(
Kz
∂h
∂z

)
−W = S

∂h
∂t
, (1)

where Kx, Ky , and Kz are hydraulic conductivity values in the x, y , and z direction
(L/T), h is hydraulic head (L), t is time (T), W is a source-sink term (1/T) represent-
ing recharge, pumping, evaporation, or drainage, and S is a storage parameter (1/L)
related to either specific storage Ss (1/L) when confined, or specific yield Sy (–) when15

unconfined. Groundwater flow was simulated using Modflow-2000 (Harbaugh et al.,
2000). The surface water component was simulated using a routing model for flow in
the main irrigation canals, including a sink-source term representing water exchange
between the canals and the groundwater system (Prudic et al., 2004).

2.2.1. Spatial and temporal discretization20

The lateral boundaries of the model domain are defined by the contact between the
alluvial deposits and bedrock in the northwest, the Sea of Cortez near the shoreline
in the southeast, and nearly stationary groundwater flow lines in the northeast and
southwest. The model domain was discretized into a regular finite difference grid of
three layers, each containing 60 rows and 70 columns, resulting in 12 600 cells with an25
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area of 2×2 km2 each. This level of horizontal discretization is deemed sufficient, since
the interest is in characterizing the regional flow system rather than accounting for flow
near individual wells. Cell thicknesses range from 5 to 170 m. The grid was oriented
at a 25◦ azimuth angle to align it with the principal direction of groundwater flow from
northwest to southeast. There were 5064 active cells within the model boundaries5

shown in Fig. 1.
In the vertical direction, the three layers represented the shallow aquifer, confining

layer, and deep aquifer as discussed earlier. The top of the first layer coincides with
the land surface elevation, which was determined from a Digital Elevation Model (DEM)
and a paper elevation map obtained from the National Water Commission (CNA) in10

Mexico. The bottom of the first layer, which is also the top of the second layer, was
estimated by interpolating elevations from selected well logs (Fig. 3) each of which
exhibits a change from coarse-grained to fine-grained material. Similarly, the top of
the third layer corresponds to a transition from fine-grained to coarse-grained material
observed in well logs. This transition also often coincided with the top of the well15

screen. Finally, the thickness of the third layer was defined as twice the well screen
lengths, giving thicknesses of approximately 30 to 170 m. As such, the third layer
represents the approximate aquifer thickness of the productive aquifer material, rather
than the total permeable thickness, which extends deeper as evidenced by geophysical
measurements (Steinich and Chavarria, 2000).20

The calibration period extends over 24 years, starting in October 1973 and ending in
September 1997, corresponding to crop years 1974–1997. This period was selected
for calibration because it covers a long record of observed aquifer head data, including
periods of increased groundwater pumping, as well as a period of measured rates
of agricultural drainage (1988–1997). Since our primary interest is in the long-term25

response of the groundwater system, the entire simulation period was discretized into
24 annual stress periods for which average annual boundary conditions were specified.
Each stress period was divided into 10 time steps, using a fixed time step multiplier
equal to 1.2. This degree of temporal discretization was tested to determine that it
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was sufficiently accurate and yet led to reasonable computational times for the 3000
calibration simulations.

2.2.2. Initial conditions

Initial values for hydraulic heads were estimated by running the model at steady-state
using time-averaged boundary conditions for the period 1972–1974 when data show5

that heads in the deep aquifer, pumping rates, and reservoir releases were all relatively
constant. The head distribution from the steady-state model was then used as initial
condition for the transient run from 1974 to 1997.

2.2.3. Irrigation, crop ET , and recharge

Recharge from field-scale irrigations is independently estimated using a mass-balance10

calculated each year and for each module in the Irrigation District,

R = SW + GW − ETc, (2)

where R is annual recharge (L/T), SW is surface water delivery to the module (in-
cludes conveyance losses during transport of water from the main irrigation canals
to the fields) (L/T), GW is irrigation using groundwater (L/T), and ETc is annual crop15

ET (L/T). Annual rates of surface-water irrigation delivered to the entire Yaqui Irriga-
tion District were distributed over the modules assuming that the spatial distribution
of surface-water allocation was the same as that during the period 1996–1999 when
module specific data were available. Annual groundwater pumping rates were avail-
able for each well throughout the entire calibration period. Total groundwater irrigation20

within each module was estimated by calculating total pumping from all wells located
within that module, excluding those wells that discharge directly into the main irrigation
canals. Finally, district-wide crop ET was estimated from annual crop acreage data and
local crop water demand values (Addams, 2004). The main crop is winter wheat (50%
of planted acreage), but a variety of other crops are grown as well, including soybeans,25
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maize, cotton, safflower, and various vegetable crops. Estimates of annual consump-
tive use for these crops were obtained from local sources (CNA; Ortiz-Monasterio,
pers. comm., 2001). The total crop ET was then distributed over the modules assum-
ing the same spatial distribution as observed for the period 1996–1999. Note that the
recharge values calculated with Eq. (2) include recharge from irrigation water applied5

at the field-scale, as well as conveyance losses through the secondary irrigation canals
which distribute water from discharge points on the main irrigation canals to the fields.
Average annual volumes of surface-water use, groundwater use, and crop water de-
mand (consumptive use) for the period 1974–1997 were 2065, 271, and 1512 MCM,
respectively. For further details of the spatial treatment of irrigation-related recharge10

and crop ET , see Addams (2004).

2.2.4. Canal seepage

Since the irrigation canals are unlined, significant amounts of water (up to 500–600
MCM annually) are lost by seepage to groundwater before canal water reaches the
end of the canals. Canal volumetric seepage rates are simulated by discretizing the15

main canals into 145 reaches with inflow of surface water from the Oviachic reservoir
(Fig. 1) specified annually at the head of each canal. Water is then routed through the
canals using a water budget for each reach,

Qout = Qin +Qgw −Qsw −Qseep, (3)

where Qout is outflow from the reach (L3/T), Qin is inflow into the reach (L3/T), Qgw20

represents pumping of groundwater into the canal (L3/T), Qsw is diversion of surface
water for irrigation (L3/T), and Qseep is canal seepage into the aquifer (L3/T). Direct
evaporation from the canals was negligible and not considered. Additions to each canal
reach by groundwater pumping, Qgw , are estimated from annual CNA records of well-
specific pumping, whereas water diversions to the agricultural modules are calculated25

from annual surface water use in each module, SW in Eq. (2), and the location of its
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diversion points along the canals. The canal-groundwater interaction term, Qseep, is
calculated using Darcy’s law,

Qseep =
KswsLs
ms

(hs − h) for h ≥ hbot (4a)

v

Qseep =
KswsLs
ms

(hs − hbot) for h < hbot, (4b)
5

where Ks is hydraulic conductivity of the canal bed (L/T), ws is canal width (L), Ls is
canal length (L), ms is thickness of the canal bed (L), hs is head in the canal reach
(L), hbot is elevation of the canal bed bottom (L), and h is head in the underlying water
table aquifer (L). For each canal reach, values for ws and Ls were estimated from
District records, and ms was set at a uniform value of 0.1 m. The elevation of the canal10

bottom was defined relative to the land surface elevation. However, due to the coarse
spatial resolution of the groundwater model (grid cells of 2 by 2 km), the elevation of
the canal bottom was specified higher than the average land surface elevation of the
grid cell in areas of steeper topography near the mountain front (Fig. 1). Uniform initial
values for Ks equal to 0.014 and 0.01 m/yr were estimated from data on canal seepage15

rates and estimated water depths in the canals, whereas the lined yet leaky parts of the
canal were assigned an initial Ks of 0.001 m/yr. Due to the uncertainty on the values of
Ks, the initial estimates were multiplied by a scaling factor, fKs (–), which was subject
to calibration (Table 1). Heads, hs, or water depths,ds=hs−hbot−ms, in the canals are
calculated using the following approximation to Manning’s equation for a 45◦ trapezoidal20

cross-section,

ds = b
√
Qs, (5)

where ds is water depth (L), Qs is flow at the midpoint of the canal reach (L3/T), and b
is a coefficient ((L/T)−0.5) estimated as a function of roughness n, slope S, and width
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ws of each canal reach (Addams, 2004). The canal-aquifer system represented by
Eqs. (1), (3), and (5) interacts through the seepage term in Eq. (4), requiring an iterative
solution at each time step. The system was solved using the stream package of Prudic
et al. (2004) and Modflow (Harbaugh et al., 2000).

2.2.5. Recharge outside the Irrigation District5

Outside the Irrigation District there are three additional sources of recharge to ground-
water: recharge from irrigation in the Yaqui Colonies, Yaqui River infiltration, and
mountain-front recharge. The Yaqui Colonies, tribal lands located to the north of the
Irrigation District, have a perpetual right to approximately 250 MCM/yr of surface wa-
ter, which was estimated to result in a constant uniform recharge rate of 0.37 m/yr10

based on the assumption of recharge mechanisms similar to the District. Yaqui River
infiltration upstream of the irrigation canals (Fig. 1) was calculated annually from tab-
ulated Irrigation District data. Except in extremely wet conditions, no water flows in
the Yaqui River past the intake of the irrigation canals (Addams, 2004). Precipitation is
only a significant source of recharge near the mountain-front boundaries (Fig. 1). This15

mountain-front recharge was estimated as (Anderson et al., 1992),

log10 (Qmf r ) = −1.34 + log10 (P ) , (6)

where Qmf r is the volume of mountain-front recharge (MCM/yr), and P is the volume of
precipitation on the upland watershed (MCM/yr). Although there is considerable inter-
annual variability in precipitation, the resulting recharge is dampened by slow unsatu-20

rated zone percolation (Flint et al., 2000). Therefore, long-term average precipitation
at the Oviachic Reservoir (0.2 m/year) was used for P , resulting in constant recharge
rates of 0.03 m/year and 0.04 m/year for the Bacatete and Baroyeca mountain fronts,
respectively. Direct precipitation in the valley was neglected as a source of recharge in
this semi-arid climate with summer temperatures that reach 40◦C.25
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2.2.6. Non-agricultural ET and bare soil evaporation

In addition to crop evapotranspiration, one also needs to account for evaporation from
native and riparian vegetation along the irrigation canals and near the coast, as well as
bare soil evaporation after of the crop growing season. Annual potential evaporation
averages 2 m/yr, approximately 60% or 1.2 m of which occurs from May to October,5

i.e. after the main wheat growing season. Actual evaporation rates are limited by the
availability of moisture near the soil surface, which mainly depends on the soil hydraulic
properties and the water table depth (Gardner, 1958; Gardner and Fireman, 1958).
Hypothetical analysis of evaporation for a clay soil, which is the main soil type in the
area, as a function of water table depth was estimated using Hydrus (Šimůnek et al.,10

1998). Results suggest an approximate linear relation between relative evaporation
and water table depth, as shown in Fig. 5. Maximum evaporation rates occur when the
water table is within 0.2 m of the land surface and no evaporation takes place when the
water table approaches 2 m depth. These values were used to calculate evaporation
as a function of water table depth. Maximum evaporation rate was set at 2 m/yr outside15

the Irrigation District. Inside the District consumptive use by crops during the growing
season is already accounted for in Eq. (2), hence the potential evaporation rate was set
at 1.2 m/yr. Although this neglects any additional evaporation that may occur during the
growing season, the simulations indicated that the upper limit of 1.2 m/yr was typically
not reached within the District. A linear approximation was applied by fitting to the20

“data” points from Hydrus and then calculating the relative evaporation as a function of
water table depth (Fig. 5).

2.2.7. Water table drainage through drainage network

Throughout the irrigation district, a drainage network has been installed to keep the
water table from rising to the ground surface. The network drains (Fig. 4) surplus25

irrigation water from fields out to the Sea of Cortez. These drains consist partly of open
drainage ditches, and partly of subsurface drainage pipes. In the model, groundwater
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flow to drains is simulated as a linear head-dependent sink,

Qd = LdCd
[
h − hd

]
(7)

where Qd is drain flow (L3/T), Ld is total drain length (L), Cd is drain conductance (L/T),
hd is drain elevation (L), and h is hydraulic head in the grid cell (L). The total drain
length, Ld , in each grid cell was determined by overlaying the drainage network map5

onto the model grid. Drain elevations, hd , for each drain segment were determined
from land surface elevations and assuming a uniform drain depth of 2 m. Finally, drain
conductance values, Cd , were estimated using monthly observed drainage volumes
and water table elevations from January 1996 to September 1997 for 13 sub-areas.
These initial Cd values were multiplied by a uniform scaling factor, fCd (–), which was10

subject to calibration (Table 1).

2.2.8. Groundwater pumping

Annual well pumping data were gathered from CNA sources for a total of 591 wells
(Fig. 1), although only a part of these are active in any given year. All pumping was
assigned to the main aquifer, i.e. layer 3.15

2.2.9. Boundary conditions

The bottom boundary of the model domain approximately corresponds to the deepest
extent below which groundwater flow in the deep aquifer is not influenced by agricultural
pumping. Hence, a zero-gradient boundary condition was used at the bottom boundary,
which prevents any water from leaving or entering the model through the bottom.20

At the northwestern boundary, a flow line extends from the Bacatete mountain range
to the Sea of Cortez, hence a zero-gradient boundary condition is assumed there. The
southeastern boundary also coincides with a flow line. Historically, these flow lines
have been fairly stable and insensitive to pumping within the Irrigation District. In addi-
tion, geophysical evidence suggests that there is high volcanic bedrock in the subsur-25
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face between the Yaqui and Mayo River Valley to the southeast, which further justifies
adopting a no-flow condition in this location (ITC, 1979). The northeast boundary of
the model corresponds to the bedrock-alluvium interface, hence no flow is assumed to
enter or leave the model there as well. Finally, the southwest offshore boundary paral-
lels the shoreline and is simulated as a constant head boundary, with heads set equal5

to zero (sea level) in the uppermost layer, allowing water to leave or enter the domain
through that layer. However, no-flow boundaries are assumed for the second and third
layers along the offshore boundary to simulate artesian conditions observed in an off-
shore island well (Fig. 3). Because discharge of groundwater occurs beneath the Sea
of Cortez, it was important that the model reproduce the head value in this offshore10

island well because it constrains the degree of submarine confinement of the aquifer.
Vertical hydraulic conductivity in other locations along the coastline was high enough to
enable deep groundwater discharge into the Sea of Cortez through the constant-head
boundary of the first layer.

2.2.10. Hydraulic properties15

The spatial distribution of horizontal (Kh) and vertical (Kv ) hydraulic conductivities was
estimated from lithologic data and well tests. It was assumed that the aquifer is hori-
zontally isotropic in each layer but vertically anisotropic, hence Kx=Ky=Kh, and Kz=Kv .
For the deep aquifer, specific capacity values were calculated for 41 wells with pump-
ing rates, static head levels, and dynamic pumping head levels recorded at the time20

of drilling (Fig. 3). These specific capacity values were converted into transmissivity
values using the following empirical relationship (Razack and Huntley, 1991),

T = 15.3S0.67
c (8)

where T is transmissivity and Sc is specific capacity, both in units of m2/day. Since the
permeable formation extends for some distance beneath the bottom of the well screen,25
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corresponding values for Kh were estimated as,

Kh3 = T
/

2b (9)

where b is the well screen length (L). The resulting Kh3 values were interpolated to
the model grid. Finally, initial values of vertical hydraulic conductivity Kv for were es-
timated to be an order of magnitude smaller than the corresponding Kh3 values, i.e.5

Kv3=Kh3/10.
Since no well tests were available for the shallow layers, initial conductivity values

for them were estimated using well log data from 55 wells (Fig. 3). The lithological
categories observed in the well logs were aggregated into a low permeable class (clay
and caliche) and a high permeable class (sand and gravel). At each well location,10

the total and fractional thickness of these materials was calculated in the upper two
layers, respectively. These thicknesses were then spatially interpolated within each
layer to provide an initial estimate of the spatial distribution of hydraulic conductivity.
The spatial distribution of Kh in layer 1 was estimated as,

Kh1 = 101−x (10)15

where x is the interpolated clay fractional thickness (0–1), resulting in values for Kh1
between 1 and 10 m/day. A hydrogeologically reasonable estimate of 10:1 was adopted
for the uncalibrated vertical anisotropy ratio in layer 1, or Kv1=Kh1/10. Finally, for layer
2 the vertical hydraulic conductivity was first estimated as,

Kv2 = 10−ay (11)20

where y is the interpolated clay thickness (0–50 m). The value of a was set to 0.1 in or-
der to reproduce artesian conditions observed in the offshore well in Fig. 3. This results
in initial estimates for Kv2 between 10−5 and 1 m/day. Horizontal hydraulic conductivity
in the layer was estimated using a 10:1 anisotropy ratio, hence Kh2=10Kv2.

Given the uncertainty of these initial estimates, the Kv and Kh values in each layer25

were scaled by factors, fKvi and fKhi , where i is the layer index. These six scaling
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factors were subject to calibration (Table 1). Finally, spatially uniform values for specific
yield, Sy (–), and specific storage, Ss (1/L), were also estimated by calibration.

2.3. Parameter optimization

2.3.1. Calibration parameters and targets

A total of 10 parameters were subject to calibration, as listed in Table 1. For each5

parameter a reasonable physical prior range of values was specified centered around
the initial estimates discussed in the previous section. The model is calibrated using
data on water table elevations, aquifer heads, drainage volumes, and canal seepage
volumes for the period 1974–1997. Figure 6 shows the well locations with water table
and aquifer head observations during this period. Note however that every well doesn’t10

necessarily have a measurement each year. Water table measurements in September
are compared to simulated values at the end of each annual stress period. Aquifer
heads are measured annually in October, when wells were turned off for 1-2 days prior
to measurement and when almost no pumping occurs since the main growing season
is from November to April. These measurements are compared to simulated heads at15

the end of each annual stress period. Since annually averaged groundwater pumping
is used in the model, this implicitly assumes that the head at the end of the water year
is not affected by intra-annual pumping changes. The third data set used for calibration
consists of annual drainage rates in the agricultural drainage network (Fig. 4) during
1988–1997 measured at various discharge locations near the Sea of Cortez. Finally,20

the Irrigation District also maintained records of the total annual volume of surface
water lost by seepage from the main canals during 1974–1997. Those values were
compared to the corresponding simulated volumes.

Since there are four different types of data to calibrate to, we can formulate four
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independent root mean square error objective functions,

RMSEk =

√√√√ nk∑
i=1

[ψk,OBS (i ) − ψk,SIM (i )

nk

]2

(12)

where k indicates the type of measurement (water table “wt”, aquifer head “aq”,
drainage volume “drain”, and canal seepage volume “seep”), RMSEk is the root mean
square error for data type k, nk is the number of measurements for data type k (891,5

3506, 130, and 48 respectively for “wt”, “aq”, “drain”, and “seep”), ψk,OBS (i ) is the i th

observation of data type k, and ψk,SIM (i ) is the corresponding simulated value. Ide-
ally, we would like to identify an optimal parameter set that minimizes all four objective
functions simultaneously. However, this is typically not possible due to errors in the
conceptual model. Therefore, the trade-offs between matching the different objectives10

were investigated by performing a multi-objective calibration and evaluating the tradeoff
relations in the Pareto optimal surfaces.

2.3.2. Calibration algorithm

The goal of the multi-objective optimization is to minimize F (p)= 〈f1(p), f2(p), ..., fN (p)〉
with respect to p, where F is the vector of objectives, fk(p) is the kth objective function15

in Eq. (1), and p is a vector of model parameters (Gupta et al., 2003). The solution to
this problem will not be a single “best” parameter set, but will consist of a Pareto optimal
set of solutions corresponding to trade-offs among the objectives. Formally, the Pareto
set consists of parameter combinations pi with the following properties: (1) for all non-
members pn there exists at least one member pi that dominates pn, and (2) it is not20

possible to find another member pj within the Pareto set that dominates pi . By defini-
tion, pi dominates pj if, for all k, fk(pi )<fk(pj ). Our four-objective optimization problem
was solved using the Multi-Objective Shuffled Complex Evolution Metropolis algorithm,
MOSCEM-UA (Vrugt et al., 2003b). Within a single optimization run, this algorithm
generates a Pareto set of parameter combinations that best fit the data according to25
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multiple objective functions. The algorithm starts by randomly generating s parameter
sets from uniform probability distributions defined by the a priori specified parameter
ranges. For each parameter set, the model is run and the values of the four objective
functions are calculated. Based on the performance on these objectives, each parame-
ter set is characterized by a single point in the multi-objective function space. Using the5

concept of Pareto dominance defined earlier, the initial population of s parameter sets
is divided into dominated and non-dominated points. The non-dominated parameter
sets i are assigned a fitness value ri ,

ri =
ni
s

(13)

where ni is the number of parameter sets dominated by parameter set i . The domi-10

nated parameter sets j on the other hand are assigned a fitness rj ,

rj = 1 +
∑
i≤j
ri (14)

where the summation is over all parameter sets i that dominate parameter set j . Pa-
rameter sets with low fitness values are retained, resulting in a preference of non-
dominated parameter sets at the extremes of the Pareto front. This strategy prevents15

convergence in the compromise region of the objectives. The algorithm proceeds by
dividing the initial parameter population s into a number of so-called complexes. Within
each complex new parameter sets are generated by sampling from a multi-normal
distribution estimated from all points in the complex, and new points are accepted or
rejected based on their fitness value. After a prescribed number of iterations, all param-20

eter sets are shuffled and new complexes are formed. Repeated application of these
steps causes the population to converge to the Pareto set of solutions. The Pareto
parameter set also contains the single objective solutions at the extremes of the Pareto
solution set (end-members). Therefore, using one optimization run the MOSCEM-UA
algorithm generates all information needed to evaluate best parameter values for each25

data type (see Vrugt et al., 2003b).
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Here the MOSCEM-UA algorithm was run with an initial population s of 200 param-
eter sets (sets of 10 parameters), randomly selected from the prior ranges defined
in Table 1. This initial sample set was then divided into 5 complexes for subsequent
optimization for a total of 3000 model simulations or evaluations.

3. Results and discussion5

The results section is organized as follows. First, all four calibration targets (water table
elevations, aquifer heads, drainage rates, and canal seepage rates) are considered si-
multaneously using the multi-objective analysis algorithm. This analysis reveals trade-
offs between the various objectives and provides insight into parameter sensitivities.
Second, a single “best” parameter set is selected for which more detailed comparisons10

are shown between simulated and observed variables. Third, results from the multi-
objective analysis in combination with a spatial analysis of model residuals are used
to improve the model performance on aquifer heads. A second calibration using the
refined model is then performed, focusing on aquifer heads alone.

3.1. Four-objective calibration15

Figure 6 presents bi-criterion plots for the four-objective calibration after 3000 model
evaluations with the MOSCEM-UA algorithm. Each plot is a marginal multi-objective
curve showing two criteria out of four total criteria dimensions. Each dot represents one
forward simulation of the groundwater model. The large cross indicates the simulation
that yields the minimum distance in the four-dimensional normalized objective function20

space. Two observations are made based on these plots. First, from the first three plots
in Fig. 6 it can be seen that there is very little variation in the RMSEwt for the range of
parameter values considered here (Table 1). This indicates that the simulation of water
table elevations is quite insensitive to any of the parameters. This may be explained by
the fact that the shallow water tables in the model are controlled by drainage in the en-25
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gineered agricultural drains and evaporation, which tend to control and suppress large
variations in simulated water table elevations. Second, the remaining bi-criterion plots
that do not involve RMSEwt (bottom three plots in Fig. 6), all exhibit trade-offs along
a right angle. This indicates that improvements in fitting one objective can be made
without deteriorating the fit to the other objective. In other words, these results suggest5

that there is little trade-off between fitting the different objectives, and that they can be
considered independently. The absence of any significant trade-offs indicates that the
model is generally well conceptualized, and that most relevant hydrologic processes
are accounted for.

At this point it is useful to consider the effect of bare-soil evaporation on the results10

of the multi-objective optimization, particularly since the initial groundwater model con-
ceptualization did not include bare soil evaporation as a significant physical process
(Addams, 2004). Figure 7 shows the same plots as Fig. 6, but now bare soil evap-
oration was omitted. The main differences are that (1) without evaporation there is
much more scatter in the plots involving RMSEwt (top 3 plots), and (2) there is a strong15

trade-off between the drainage and canal seepage objectives. In other words, no sin-
gle parameter combination exists that yields a correct simulation of both drainage and
canal seepage, suggesting that a key physical process is missing in the conceptualiza-
tion of the shallow groundwater system. Correct simulation of canal seepage results in
too much water discharging through the surface drains, hence pointing to an additional20

sink that needs to be included (evaporation). On the other hand, drainage can only
be correctly simulated by reducing canal seepage (e.g. by decreasing the canal bed
conductivity). It was not possible to discharge the extra water as subsurface flow to
the Sea of Cortez within the realistic range of hydraulic conductivities. None of these
trade-offs are present in the plots that include bare soil evaporation (Fig. 6). This il-25

lustrates that multi-objective optimization is a useful method for simultaneously dealing
with parameter and model structural uncertainty.

In the following paragraphs we investigate how well the model parameters are iden-
tified by the four objective functions. Figure 8 presents so-called dotty plots (Beven
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and Freer, 2001) for each of the four objectives (a–d) as a function of each of the
10 calibration parameters. Note that all parameter scales on the horizontal axes are
log-transformed, except for Sy . Starting with the water table elevations, Figure 8a indi-
cates that RMSEwt is relatively more sensitive to the horizontal hydraulic conductivity
of the deep aquifer, Kh3, and the conductivity of the canal bottom, Ks, compared to the5

other parameters. However, as discussed above, RMSEwt is not sensitive to any of
the parameters as evidenced by its small variation (around 2.5–3 m). Secondly, Fig. 8b
shows that the simulated deep aquifer heads are most sensitive to the deep aquifer
hydraulic conductivity, Kh3, and less obviously the vertical hydraulic conductivity of the
confining layer, Kv2. Best performance on aquifer heads, as indicated by low values10

for RMSEaq, are obtained for fKh3 values greater than 0. Hence, the multi-objective
analysis shows that increases in Kh3 result in a better simulation of the aquifer heads
compared to using the initially estimated values for this parameter (which corresponds
to fKh3=0). The minimum value of RMSEaq identified by the MOSCEM-UA algorithm
is 7.2 m (Fig. 8, Table 3). Figure 8b suggests that improvements in the simulation of15

aquifer heads may be possible by re-examining the Kv2 and Kh3 parameterizations.
This will be investigated in the next section. With regard to the simulation of drainage
rates, Figure 8c clearly demonstrates that RMSEdrain mainly depends on the value of
the drain conductances (fCd ). On the other hand, RMSEseep is primarily sensitive to the
canal bed hydraulic conductivity, Ks (Fig. 8d). Overall, the results in Fig. 8 suggest that20

the different objectives are sensitive to different parameters, implying that each objec-
tive could be fitted independently by finding the optimum value(s) for its most sensitive
parameter(s). This confirms the conclusions that were drawn from Fig. 6 about the
independence of the objective functions. It also means that the interaction between the
surface water and groundwater systems is limited. We further conclude that improve-25

ments in the simulation of heads in the deep aquifer are most likely by reconsidering the
Kv2 and Kh3 parameterizations, and this could be done without significantly affecting
the other three objectives.

It is important to realize that these findings most likely would have been obscured
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in a single-objective analysis, as the different data types would have been lumped into
a single objective function, thereby blurring the sensitivity of the parameters to certain
data types. Furthermore, the sensitivity and identifiability of the parameters would then
essentially depend on the weights assigned to the different data types. Therefore, the
independence of the different objectives in the multi-objective analysis increases the5

information content of the data and results in better parameter estimates.
What the dotty plots do not show is possible correlation between the parameters,

which if present could cause poor parameter sensitivity and identifiability. Table 2
shows correlation coefficients between the 10 parameters based on a subset of sim-
ulations in the region of compromise of the four-objective space, identified by the fol-10

lowing criteria: RMSEwt<3, RMSEaq<10, RMSEdrain<30, and RMSEseep<50. Note
that these correlations were calculated on the estimates of the parameter values, not
the log-transformed values. The strongest correlation in Table 2 equals −0.25, be-
tween parameters fCd and fKs, suggesting that, for the sake of parameter identifiability,
parameter correlations are small (Hill 1998).15

Table 3 summarizes the optimal parameter and RMSE values when minimizing the
four objectives separately, as well as for the compromise solution which minimizes the
Euclidean distance in the normalized objective function space (shown as a cross in
Fig. 6). The range in optimal parameter values for the various objective functions is
still quite large compared to the prior ranges specified in Table 1. In other words, the20

parameter uncertainty associated with the multi-objective Pareto solution is large, typ-
ically an order of magnitude. As was discussed earlier, this is due to the fact that the
different objective functions are sensitive to different parameters. However, this does
not mean that the parameters are necessarily not well identified or that the model is
in error. For example, canal seepage is very sensitive to the canal bed hydraulic con-25

ductivity (Fig. 8), hence this parameter is known with certainty. Its Pareto uncertainty
on the other hand is large, because the other objectives are not that sensitive to it.
Note also that the parameter values of the compromise solution usually lie close to the
parameter value obtained by minimizing the objective function that is most sensitive to
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that parameter. For example, in the compromise solution, parameter fKs takes on the
value of 1.3, which is the same as its optimal value when fitting to the seepage rates
only. The same can be said about parameters fCd and fKh3. Furthermore, Table 3
shows that the compromise solution does only slightly worse in fitting the four objec-
tives compared to the single objective results. Hence, little trade-off or compromise5

exists between fitting the four objective functions.

3.2. “Best” parameter set

Next, we select the compromise solution discussed in Table 3 as our “best” model and
examine how well it mimics the observed dynamics in the system. The results are pre-
sented in Figs. 9, 10, 11 and 12. Figure 9 shows scatter plots of simulated versus ob-10

served water table elevations, aquifer heads, drainage rates, and canal seepage rates.
The corresponding RMSE values are listed in Table 3. The prediction of water table
elevations can be considered very good, whereas the plot of simulated vs. observed
aquifer heads still shows a lot of scatter (RMSE=7.7 m). The spatial and temporal vari-
ation in drainage volumes is fairly well predicted, (RMSE=17.6 MCM/yr), especially in15

view of the uncertainty associated with the drainage measurements. Canal seepage
rates in the two canals are predicted quite well (RMSE=26 MCM/yr), as is also appar-
ent in Fig. 10, which presents time-series of observed and simulated canal seepage
and total drainage rates.

Figure 11 shows pie charts of the simulated time-averaged (1974–1997) annual wa-20

ter balance. The two main sources of water inflow into the groundwater system are,
first, irrigation water applied on agricultural fields and seepage from secondary irriga-
tion canals (2445 MCM/year or 84% on average), and second, seepage from the main
irrigation canals (454 MCM/year or 16%). Groundwater discharge is composed of
crop evapotranspiration (1513 MCM/year or 53%), non-agricultural evapotranspiration25

and bare-soil evaporation (531 MCM/year or 19%), surface and subsurface agricul-
tural drainage discharging into the Sea of Cortez through the outlets of the drainage
network (448 MCM/year or 15%), and groundwater pumping (271 MCM/year or 9%).
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Note that subsurface groundwater discharge to the Sea of Cortez accounts only for 12
MCM/year which is less than 1% of the total annual outflow. These simulated values
compare well to observed canal seepage volumes (473 MCM/year on average) and
drainage volumes (499 MCM/year observed on average during 1988–1997, compared
to 477 MCM/year simulated over the same period for that part of the drainage network5

that is monitored).
Finally, we investigated the model performance on aquifer heads using the best pa-

rameter set, and suggest an improvement in the model structure based on a spatial
analysis of the model residuals. Figure 12a shows a map of the time-averaged resid-
ual error, interpolated from errors calculated for the wells shown in the same figure.10

There are clear spatial patterns, with regions of consistent over-estimation (residual
error greater than zero) and under-estimation (residual error smaller than zero). This
suggests that some adjustment is needed in the spatial distribution of hydraulic prop-
erties, as initially estimated from well log and specific capacity data. Instead of using
a single uniform scaling factor, we can use the spatial patterns in the model residual15

map to construct distinct zones of uniform scaling factors. This is discussed further in
the next section.

3.3. Model refinement for aquifer heads

Based on a comparison of simulated and observed values using the best parameter
set identified by the multi-objective analysis, we concluded that the model does rea-20

sonably well in simulating water table elevations, canal seepage and drainage rates.
However, results for the aquifer heads were less satisfactory as shown by the large
value of RMSEaq (7.7 m) and the model residual map in Fig. 12a. Unfortunately, there
is only limited information on the geology in this area. The available information (well
logs) was used to specify the initial spatial distribution of conductivities, but there is25

considerable uncertainty on these estimates. Here an attempt is made to improve the
model performance by including more (indirect) information about the geology, namely
in the form of hydraulic heads in the deep aquifer. First, the spatial patterns in the
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model residual map were used to construct distinct zones of uniform scaling factors.
This zonation is shown in Fig. 12b. Results from the multi-objective calibration also
indicated that the simulation of aquifer heads is most sensitive to the scaling factors for
Kh3 and Kv2. Therefore, the model was refined by introducing spatially varying scaling
factors for Kh3 and Kv2, defined by the zonation in Fig. 12b. Based on the results of the5

multi-objective calibration run, changing these parameter values will have little effect
on the simulation of water table elevations, drainage rates, and canal seepage rates.

A single-objective calibration was performed on aquifer heads only, using 8 cali-
bration parameters, i.e. scaling factors for Kh3 and Kv2 for each of the four zones in
Fig. 12b. All the other parameters that were considered before (Table 1) are now10

fixed at their “best” values as identified by the multi-objective calibration (Table 3). The
SCEM-UA global optimization algorithm (Vrugt et al., 2003a) was used to identify the
parameter values that minimize RMSEaq. Optimal parameter values identified by the
algorithm after 3000 model runs are listed in Table 4. Corresponding values for the
various RMSE values are also shown. We can see that the zonation of the hydraulic15

properties resulted in a decrease of RMSEaq from 7.7 (Table 3) to 5.6 m (Table 4). In
addition, the zonation also caused a better fit to steady-state aquifer heads (1972–
1974), as measured by a decrease in the steady-state RMSE values from 6.3 to 3.0 m.
Values of the other three objectives not included in the new calibration (Table 4) are
similar, even slightly better, than those before the second calibration (Table 3). Never-20

theless, spatial patterns in the model residuals still exist (Fig. 12c), although the errors
have decreased. The optimal parameter values in Table 4 are consistent with the spa-
tial patterns of over- and under-prediction in Fig. 12a. The over-predictions in zones 2
and 4 result in smaller values for fKv2 in these zones compared to the best parameter
set in Table 3, whereas the opposite occurs for zone 3, where heads were consistently25

under-predicted. Note that the scaling factors are again relative to the originally esti-
mated hydraulic conductivities using well log and specific capacity data. Although in
Table 4, the optimal values of fKv2 for zones 2 and 4 are at or near the prior minimum
value of 0.01, the results could not be improved by letting fKv2 reach even lower values.
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In other words, once fKv2 is small enough very little water will percolate vertically. Final
calibrated maps of Kv2 and Kh3, obtained by multiplying the original estimates with the
optimal scaling factors in Table 4, are shown in Fig. 13. The large horizontal conductiv-
ities in the northern part of the study area agree with the occurrence of coarse gravel
deposits observed in the well logs of that area.5

Finally, parameter uncertainty was estimated on a set of behavioral models, defined
by the criterion that RMSEaq<6 m. Minimum and maximum parameter values for this
subset of 229 parameter sets are shown in Table 4, and typically span an order of mag-
nitude. The resulting prediction uncertainty is shown in Fig. 14. This figure presents
time-series of observed and simulated aquifer heads for various locations, which are10

identified by a number in each graph corresponding to the numbered wells in Fig. 4.
The optimal model is shown as a dark solid line, whereas the grey lines represent
the range in prediction uncertainty associated with all parameter sets that result in an
RMSEaq<6 m. In most cases, the ranges in predicted heads bracket the observations.
Several simulated and observed heads decline during the 1970s and into the early15

1980s, followed by a recovery in head levels after that. This corresponds to a period of
increased groundwater pumping in the early 1980s, followed by an increase in surface
water supply and a decrease in groundwater pumping after 1985.

4. Conclusions

This paper presented the application of multi-objective optimization to calibrate a re-20

gional surface water-groundwater model for the Yaqui Valley in Mexico. Irrigated agri-
culture in this highly engineered hydrologic system with its surface reservoirs empty
is in serous jeopardy. Groundwater as an increasingly valuable commodity and. a
groundwater model will be an increasingly important tool to ensure that water is bet-
ter managed to sustain crop production in the future. Our model integrates the sur-25

face water and groundwater systems and accounts for the spatial distribution of an-
nual recharge from irrigation, subsurface drainage, agricultural pumping, and irrigation
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canal seepage. A four-objective calibration problem was formulated to find improved
estimates of the hydraulic parameters using head data from the shallow and deep
aquifers, as well as data on agricultural drainage and canal seepage volumes. The
main advantage of the method is that it accounts for both parameter and model struc-
tural uncertainty. In this case, results show that the effect of including bare soil evap-5

oration is greater than the effects of parameter uncertainty, as evidenced by a strong
trade-off between the drainage and seepage objectives when bare soil evaporation is
not included in the model. Furthermore, by treating the different objectives indepen-
dently, the method allowed for better identification of the model parameters compared
to a single-objective approach, since the various objectives were sensitive to differ-10

ent parameters. Large parameter variation (uncertainty) of the Pareto set of solutions,
which includes the best-fit end-members for each of the objective functions, does not
always point to a model structural error, because such large parameter uncertainty may
also be caused by the insensitivity of one of the objectives for the parameter. The shape
of the trade-off curve is a much better indicator of model structural error. The simulated15

water balance shows that 15–20% of the water that enters the irrigation canals is lost
by seepage to groundwater. The main discharge mechanisms in the Valley are crop
evapotranspiration (53%), non-agricultural evapotranspiration and bare soil evapora-
tion (19%), surface drainage to the Sea of Cortez (15%), and groundwater pumping
(9%). In comparison, groundwater discharge to the estuary was relatively insignificant20

(less than 1%). Heads in the deep aquifer were most sensitive to the vertical con-
ductivity of the confining layer (Kv ) and the horizontal conductivity in the deep aquifer
(Kh). The model was further refined by identifying zonal Kv and Kh values based on a
spatial analysis of the model residuals. Subsequent calibration of Kv and Kh to aquifer
head only (single-objective) resulted in further improvements in simulated heads. The25

final calibrated parameter values and their associated uncertainties presented here will
be used in future work on identifying optimal groundwater management strategies and
their reliability. Since groundwater storage in the Valley is about 16 times greater than
the available surface water in the reservoirs, sustainable water resource allocation will
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undoubtedly rely on water pumped from storage.
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Table 1. Calibration parameters and their prior uncertainty ranges.

Parameter Description Units Minimum Maximum Transformation

fKv,h(i ) Scaling factors for
hydraulic conduc-
tivity (v , vertical;
h, horizontal; i =
1. . . 3, layer index)

– 0.1 10.0 Log10

Sy Specific yield – 0.10 0.30 None

Ss Specific storage 1/m 10−5 10−3 Log10

fCd Scaling factor for
drain conductance

– 0.1 10.0 Log10

fKs Scaling factor for
conductivity of
canal bottom

– 0.1 10.0 Log10
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Table 2. Parameter correlation coefficient matrix for a subset of simulations, identified by the
following criteria: RMSEwt<3, RMSEaq<10, RMSEdrain<30, and RMSEseep<50.

fKv1 fKh1 fKv2 fKh2 fKv3 fKh3 Sy Ss fCd fKs

fKv1 1.00 −0.04 0.04 0.11 −0.10 0.03 0.15 −0.20 0.03 0.07
fKh1 −0.04 1.00 0.06 −0.04 0.19 0.03 0.10 0.19 −0.11 0.07
fKv2 0.04 0.06 1.00 −0.12 0.11 −0.01 0.15 −0.21 0.02 −0.06
fKh2 0.11 −0.04 −0.12 1.00 −0.20 −0.02 0.01 −0.21 −0.01 −0.14
fKv3 −0.10 0.19 0.11 −0.20 1.00 0.01 −0.03 −0.02 −0.12 −0.17
fKh3 0.03 0.03 −0.01 −0.02 0.01 1.00 0.12 0.00 −0.25 0.16
Sy 0.15 0.10 0.15 0.01 −0.03 0.12 1.00 0.12 −0.18 −0.10
Ss −0.20 0.19 −0.21 −0.21 −0.02 0.00 0.12 1.00 −0.03 0.08
fCd 0.03 −0.11 0.02 −0.01 −0.12 −0.25 −0.18 −0.03 1.00 −0.14
fKs 0.07 0.07 −0.06 −0.14 −0.17 0.16 −0.10 0.08 −0.14 1.00
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Table 3. Optimal parameter and RMSE values for various objectives. “Euclid-dist” refers to the
distance in the normalized four-dimensional objective function space.

Minimize
RMSEwt

Minimize
RMSEaq

Minimize
RMSEdrain

Minimize
RMSEseep

Minimize
“Euclid-dist”

fKv1 2.9 3.3 1.1 4.3 0.6
fKh1 7.8 1.6 7.3 1.2 2.0
fKv2 0.4 1.1 0.4 0.5 0.2
fKh2 9.3 7.3 1.6 0.5 1.7
fKv3 0.4 8.4 1.2 0.5 0.4
fKh3 8.6 9.1 2.9 0.9 7.0
Sy 0.26 0.11 0.15 0.18 0.2
Ss 2.0E-04 1.8E-05 6.6E-05 3.3E-05 5.3E-04
fCd 0.1 5.1 1.7 2.4 1.8
fKs 0.6 0.4 0.9 1.3 1.3
RMSEwt (m) 2.5 2.6 2.8 2.9 2.8
RMSEaq (m) 7.4 7.2 9.4 15.5 7.7
RMSEdrain (MCM) 41.4 23.6 15.3 23.6 17.6
RMSEseep (MCM) 125.2 154.9 72.8 25.4 26.6
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Table 4. Optimal parameter and RMSE values for various objectives. The different zones are
mapped in Fig. 12b. * These are minimum and maximum values of all parameter sets with an
RMSEaq<6 m.

Zone Minimum Maximum Optimum Minimum* Maximum*
(prior) (prior) (minimize

RMSEaq)

fKv2 1 0.01 100 1.0 0.08 9.4
2 0.01 100 0.01 0.01 0.19
3 0.01 100 37 6 97
4 0.01 100 0.013 0.01 0.15

fKh3 1 0.1 10 5 1.2 10
2 0.1 10 8.7 0.8 10
3 0.1 10 1.2 0.12 10
4 0.1 10 0.40 0.16 10

RMSEwt (m) 2.7
RMSEaq (m) 5.6
RMSEdrain (MCM) 17.4
RMSEseep (MCM) 26.2
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 34

 

Figure 1 

 

Fig. 1. Location of the Yaqui Valley study area, the Yaqui Irrigation District, and extent of the
groundwater model.
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Figure 2 
Fig. 2. Conceptual model of the Yaqui Valley surface-groundwater system.
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Figure 3 

 

Fig. 3. Locations of wells with well log and specific capacity data used to define model layers
and hydraulic properties. The model grid is also shown.
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Figure 4 

 

Fig. 4. Locations of wells with observed water table elevations and aquifer heads used for
model calibration. The drainage networks with measured drainage volumes are also shown.
Numbers correspond to wells for which time-series are shown in Fig. 14.
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Figure 5 

 

 

Fig. 5. Relation between relative evaporation and water table depth for a clay soil, simulated
with the HYDRUS code (triangles) and approximated with a piecewise linear function.
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Figure 6 
Fig. 6. Bi-criterion plots for the four-objective calibration run after 3000 model evaluations with
the MOSCEM-UA algorithm.
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Figure 7 

 

Fig. 7. Bi-criterion plots for the four-objective calibration run after 3000 model evaluations with
the MOSCEM-UA algorithm, without bare soil evaporation.
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Figure 8 Fig. 8. Dotty plots for the four-objective calibration run, showing sensitivity of the various ob-
jective functions to the calibration parameters. (a) water table elevations, (b) aquifer heads,
(c)drainage rates, and (d) canal seepage rates. All parameter scales are log-transformed,
except Sy . Bold frames highlight significant effects of a parameter on an objective function.
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Figure 9 
Fig. 9. Scatter plots of simulated versus observed water table elevations, aquifer heads,
drainage volumes, and canal seepage volumes.
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Figure 10 

 

Fig. 10. Time-series of observed and simulated canal seepage and total drainage volume.
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Figure 11 

 

Fig. 11. Pie chart of the annual simulated water balance, averaged over the period 1974–1997
expressed as MCM and as percentages of the total inflows and outflows. Recharge below the
root-zone, calculated as the difference between infiltration and crop ET , constitutes 65% of the
total inflow into groundwater.
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Figure 12 

 

 

 

Fig. 12. (a) Interpolated map of time-averaged model residuals for simulated aquifer heads
using the best parameter set of the multi-objective calibration, (b) corresponding zones of
uniform Kv2 and Kh3 scaling factors used in the single-objective calibration, and (c) resulting
time-averaged residuals after the second calibration.
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Figure 13 

 

 

Fig. 13. Calibrated maps of Kv2 (a) and Kh3 (b) using the optimal parameter set in Table 4 after
the second calibration.
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Figure 14 

 

Fig. 14. Time-series of observed (triangles) and simulated (solid lines) aquifer heads for various
locations, shown in Fig. 4. The dark solid line corresponds to the optimal solution of the single-
objective calibration. The grey lines represent all simulations with an RMSEaq less than 6 m.

2109

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/2061/hessd-2-2061_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/2061/comments.php
http://www.copernicus.org/EGU/EGU.html

